叉乘的导数
在工作中需要对很多函数求导数,叉乘的导数也不例外,这里就来记录一下在求导数过程中如果碰到叉乘该怎么办。
计算两个向量叉乘的偏导的方法为:
$$ \frac{\partial}{\partial x}(\vec{a}\times\vec{b})=\frac{\partial\vec{a}}{\partial x}\times \vec{b}+\vec{a}\times \frac{\partial \vec{b}}{\partial x} $$
叉乘的一些性质
- $\vec{a}\times\vec{b}=-\vec{b}\times\vec{a}$
- $\vec{a}\times\vec{a}=\vec{0}$
- $\vec{a}\times(\vec{b}+\vec{c})=\vec{a}\times\vec{b}+\vec{a}\times\vec{c}$
当向量是3维时,$\vec{a}\times\vec{b}=\vec{a}^\wedge\cdot\vec{b}$
其中,$\bullet^\wedge$运算的定义为:
$$ \begin{bmatrix}x_1 \\ x_2 \\ x_3 \end{bmatrix}^\wedge= \begin{bmatrix} 0 & -x_3 & x_2\\ x_3 & 0 & -x_1\\ -x_2 & x_1 & 0\\ \end{bmatrix} $$
例子
例子1
求$\vec{a}\times\vec{b}$对$\vec{a}$求偏导:
$$ \begin{align*} \frac{\partial}{\partial \vec{a}}(\vec{a}\times\vec{b})&=\frac{\partial\vec{a}}{\partial\vec{a}}\times \vec{b}+\vec{a}\times \frac{\partial \vec{b}}{\partial\vec{a}}\\ &=-\vec{b}\times\frac{\partial\vec{a}}{\partial\vec{a}}+\vec{a}\times0\\ &=-\vec{b}^\wedge \end{align*} $$
例子2
求$\vec{a}\times\vec{a}\times\vec{b}$对$\vec{a}$求偏导:
$$ \begin{align*} \frac{\partial}{\partial\vec{a}}(\vec{a}\times\vec{a}\times\vec{b})&= \frac{\partial\vec{a}}{\partial\vec{a}}\times(\vec{a}\times\vec{b})+\vec{a}\times\frac{\partial(\vec{a}\times\vec{b})}{\partial\vec{a}}\\ &=-(\vec{a}\times\vec{b})^\wedge+\vec{a}^\wedge\cdot(-\vec{b}^\wedge)\\ &=-(\vec{a}\times\vec{b})^\wedge-\vec{a}^\wedge\cdot\vec{b}^\wedge \end{align*} $$
Reference
https://en.wikipedia.org/wiki/Vector-valued_function#Derivative_and_vector_multiplication